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Abstract: Worldwide, the utilization of Unmanned Aerial Vehicles (UAVs) has been de-

ployed in a wide range of resources management practices. The UAVs serve as valuable and 

visible tools for managing water resources, forests, agriculture, and land use change. Undoubt-

edly, the application of UAVs surpasses traditional methods in terms of efficiency, offering 

significant time and cost savings. Meanwhile, Artificial intelligence (AI) has emerged as a 

critical technology in the realm of information technology, particularly when it comes to image 

segmentation. The purpose of this study is to integrate UAVs and AI for mapping shrimp farms 

in Long An province, Mekong Delta. By leveraging AI, we empower systems to learn intricate 

image features and subsequently identify and segment objects within those images. In the con-

text of modern agricultural management practices, we leverage UAV imagery as input data for 

AI systems to identify shrimp ponds, the image recognition platform is Deep Learning (DL) 

based on U – Net structure. Using the shrimp pond boundary on the 1:1000 scale topographic 

map as reference data, the results of this method showed a recall of 83.3%, corresponding to a 

miss rate of 16.7%. The precision of the method was 85.7%, corresponding to a misidentified 

shrimp pond extraction rate of 14.3%. The results suggest that the combination of UAVs and 

AI to mapping shrimp farms can facilitate efficient monitoring and management practices for 

local authorities. Thus, this integration is a promising application to assist and enable agri-

cultural planning and regional economic development activities. 
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1. Introduction 

Since 1970, the global practices of shrimp farming cultivation have undergone the rapid 

growth of both area and intensive cultivation. Particularly, Southeast Asia is the most bur-

geoning region, which remains a dominance of the world’s shrimp production [1]. Asian 

countries collectively contribute approximately 55% to the world’s total shrimp exports. No-

tably, Vietnam stands out as one of the top three shrimp exporters globally, alongside India 

and Ecuador [2]. Among the top Asian shrimp exporters, India, Vietnam, Indonesia, Thai-

land, Bangladesh, and China contributed to nearly 92% of the regional shrimp exports [3]. 

As a part of the Mekong Delta’s broader policy, Long An province specifically promoted the 

transformation of low productive rice-cultivation land into aquaculture areas. The shift of 

this strategic aims to enhance land utilization efficiency and boost income for the livelihoods 
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of local households [4]. Simultaneously, this conversion initiative seeks to restructure agri-

cultural production in specific regions and localities, leveraging the unique advantages of 

specific land areas and natural conditions. The ultimate goal is to foster favorable conditions 

for sustainable agricultural development [5–6]. Thus, Long An province has chosen shrimp 

cultivation as one of aquaculture’s mainstay to benefit from high-tech production methods 

during the 2021-2025 period. To enhance production efficiency, Can Giuoc district and the 

broader province have actively promoted the transition from traditional shrimp practices to 

high-tech farming approaches. These advanced methods include multi-stage nursery ponds, 

bottom siphons, bottom oxygen, automatic feeding machines, frequency converters, Biofloc 

water treatment technology, and microbiological techniques [7].  

As high-tech methods revolutionize shrimp farming, modern solutions are also employed 

to collect, construct, and manage aquaculture map data specifically related to shrimp. This 

data serves as the foundation for analyzing local climate, soil conditions, and farmers’ prac-

tices and techniques in shrimp farming. Simultaneously, it plays a crucial role in land man-

agement, aligning with state policies [8].  

An aircraft that operates without a human pilot onboard is commonly known as An Un-

manned Aerial Vehicle (UAV). This kind of facility has evolved significantly over time and 

now serves a multitude of purposes, from military reconnaissance to civilian applications like 

aerial photography and environmental monitoring [9]. UAVs are revolutionizing global ag-

riculture by enabling precision management of critical inputs, including the use and type of 

fertilizers, agrochemicals, and natural resources (soil and water). The impact of UAV appli-

cations is far-reaching such as efficiently survey implementation in large areas in a short 

time, offering real-time solutions through advanced data analytics tools [10]. In fact, UAVs 

serve as a valuable platform for efficiently managing resources and monitoring the environ-

ment, especially in the face of complex challenges posed by rapid changes in anthropogenic 

activities and climate change effects. 

Researchers harnessed multispectral imagery captured by a UAV to monitor the cultiva-

tion of Kappaphycus alvarezii (commonly known as Kappaphycus), a type of seaweed. By 

estimating fresh weights of seaweed and carrageenan across different days in three cultiva-

tion cycles, they derived daily growth rates. The innovative approach of UAVs - a kind of 

remote sensing facility - performs an amplitude application for precision aquaculture, specif-

ically benefiting Kappaphycus cultivation [11]. Due to prominent features, UAVs play a cru-

cial role in aquaculture farm management and monitoring, particularly for offshore cages 

(floating fish-cage cultivation). Accordingly, UAVs assist to collect data on various param-

eters such as the quality and pollutants of water, temperature of water bodies, the velocity of 

water flow, and the behavior of fish. Equipped with sensors and advanced technologies, 

UAVs can even detect the cages themselves and monitor for illegal fishing activities. This 

integration of UAVs contributes to a precision aquaculture framework [12–14]. Previous 

studies have explored the use of UAVs to establish marine ecosystem zoning and create aq-

uaculture status maps. These maps synchronize data, offer valuable information for manage-

ment, and aid decision-making processes [15–16].  

Recent far-reaching developments of artificial neural network, AI has brought a magni-

tude of its application for various areas. AI refers to the capability of machines to operate 

independently, without manual guidance. These AI-based systems are typically programmed 

for automation, and they incorporate human intelligence to make decisions, especially in crit-

ical situations [9–10]. The algorithms of image recognition constitute statistical, syntax, and 

pattern matching data. In recent years, advancements in neural network and support vector 

machine technologies have propelled image recognition to new heights [11]. Deep learning 

(DL), a subset of AI, operates through artificial neural networks. It excels at analyzing and 

processing data, simulating aspects of the human brain [12]. DL architecture encompasses 

both supervised and unsupervised models. In the supervised realm, different types of DL 
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were deployed, including recurrent neural networks (RNNs), long short-term memory 

(LSTM), gated recurrent unit (GRU), convolutional neural networks (CNNs), and generative 

adversarial networks (GANs). On the unsupervised side, we encounter deep belief networks 

(DBNs), Deep Transfer Networks (DTNs), Tensor Deep Stack Networks (TDSN), and auto-

encoders (AEs). These models play crucial roles in tasks ranging from image recognition to 

feature extraction [13]. The U-Net is known as a popular architecture of neural network made 

its debut in 2015 within the medical field. It’s a DL framework specifically crafted to max-

imize efficiency when working with limited data while still achieving impressive speed and 

accuracy [14]. Accordingly, the U-Net architecture was applied for image segmentation, that 

features a distinctive design comprising two main components of path: the contracting path 

and the expansive one. In the contracting path, encoder layers extract contextual information 

and down sample the input’s spatial resolution. In order to decode layers, the expansive path 

was employed to reconstruct the encoded data, leveraging skip connections that incorporate 

information from the contracting path. Ultimately, U-Net generates accurate segmentation 

maps [15]. The U-Net architecture derives its name from its distinctive “U” shape (Figure 1). 

 

Figure 1. U-net architecture [16]. 

The study objective is to deploy the integration of UAV and AI for constructing shrimp 

pond maps with a case of Can Giuoc district, Long An province. In this study, we leverage 

the U-Net architecture to meticulously segment and distinguish shrimp ponds. The input data 

comprises processed UAV images, then transformed into detailed image maps. 

2. Materials and Methods 

2.1. Study area 

The study area constitutes two communes (Phuoc Lai and Phuoc Vinh Tay) of Can Giuoc 

District, Long An province. Can Giuoc District, situated in the south-eastern part of Long An 

Province, which holds a significant geographical importance since it serves as a gateway to 

both Ho Chi Minh City and south-western provinces of the Mekong Delta area. The study 

area lies at approximately 10o36’15” North latitude and 106o41’44” East longitude. Its terrain 

resembles a river delta near the mouth, characterized by flat expansion intersected by a net-

work of rivers and canals. Notably, 48.34% of the natural area consists of saline and alum 

soil, making it well-suited for high-yield aquaculture.  
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Situated along the banks of the Can Giuoc River, the District has emerged as a prominent 

hub of the provincial brackish water shrimp production. Approximately 90% of shrimp pro-

duction consists of white-leg shrimp (scientifically known as Litopenaeus vannamei). The 

study area spans approximately 135 hectares and is strategically positioned within a govern-

ment-invested zone dedicated to advancing shrimp farming by adopting high-tech agricul-

tural practices. 

 

Figure 2. The study area is located between two communes (Phuoc Lai and Phuoc Vinh Tay). 

2.2. Data and methods 

The data collection process relies on the Trimble UX5 device, a specialized tool with a 

long history in mapping applications. The UX5 system comprises five key components: the 

aircraft fuselage, camera, ground control, launcher, and device detector. Notably, the fuselage 

weighs 2.5 kg, boasts a 100 cm wingspan, and features a wing area of 34 dm² enhancing 

UAV stability during photo capture (Figure 3a). As for imaging, the Sony A5100 camera 

plays a crucial role, offering a resolution of 24.3 megapixels (Figure 3b). 

 

Figure 3. UAV and camera attached to UAV. 
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The field investigation was carried out 

on March 30, 2023, in which flights of the 

UAV took place at 300 m of altitude. For 

coverage, both overlap tracks of along and 

across sides were set to 80%. Additionally, 

the vertical angle during the flight was 90 

degrees (Figure 4). 

The Trimble UX5 utilizes advanced 

technology of Post Processed Kinematic - 

Global Navigation Satellite System (PPK 

GNSS) to precisely determine the location 

of captured images, resulting in time 

savings during field operations. Before 

feeding these images into the image 

processing software, their locations are 

adjusted and recalculated for high 

accuracy. Agisoft Metashape software 

plays a crucial role in processing the 

collected data. It takes the raw input and 

transforms it into the orthomosaic, 

following the steps as depicted in Figure 5. 

In this study, the DL model was de-

veloped and coded within the Google 

Colab platform, utilizing Python as the 

programming language. Google Colab of-

fers access to Graphics Processing Units 

(GPUs), significantly enhancing model 

training especially when dealing with 

large datasets by harnessing the power of 

the computing cloud. 

The process of using a DL model to 

extract shrimp ponds typically involves 

three phases. First, there’s data prepara-

tion, where relevant imagery or data about 

the ponds is gathered. Next comes model 

training, during which the DL model learns from this collected data. Finally, model imple-

mentation is deployed to analyze new image sets and identify shrimp ponds. 

During the data collection phase for shrimp pond mapping with DL, several key steps 

are involved. First, unprepared image data is gathered, including data captured by UAVs in 

the project area and other available sources. Next, preprocessing steps are performed to stand-

ardize image sizes and remove noise. The dataset is then enriched by incorporating algorith-

mic variables. Subsequently, the data image set is categorized into training and test data. The 

dataset is essential to training the DL model, while a data checker evaluates optimal values 

and parameters within the model (Figure 6). 

In the module training phase, several key steps are involved. First, the processed dataset 

is assigned to the DL model using a U-Net architecture. Next, the output data is evaluated 

after the model is applied to the input dataset. The training dataset plays a crucial role in 

training the DL model. Additionally, during this step, optimization functions are tested to 

select the optimal parameters for enhancing the model’s performance. 

The model implementation phase involves several critical steps. First, the output data 

from the optimized DL model is digitized. Next, this digitized data is synchronized with the 

Figure 4. Camera angle is 90 degrees for all photos taken. 

Figure 5. Procedure of image processing. 
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web application’s database, where it undergoes processing and storage either on an on-prem-

ises server or in the cloud. Finally, a web application is created to facilitate end users’ access 

to and modeling of map data. In our study, we structure the output data in two formats: raster 

and shapefile with polygon geometry. These formats allow us to represent spatial information 

effectively. Additionally, we link the results to background data available on the web. This 

preliminary verification process ensures the correctness of the coordinate system alignment 

and the accurate classification of characteristic objects. 

 

Figure 6. Different data samples of shrimp ponds. 

The confusion matrix is like 

a trusty compass for data scien-

tists and DL enthusiasts. It helps 

us navigate the performance of 

our models when dealing with 

segmentation tasks (like identi-

fying objects within an image) 

or distinguishing between dif-

ferent classes (such as “cat” vs. 

“dog”) (Figure 7). 

The results of shrimp ponds 

recognition and classification 

from the DL model are evalu-

ated through the parameters of pre-

cision and recall. Each evaluation parameter will have different meanings and serve different 

purposes. The formula for evaluating these parameters is shown as follows: 
TP

Pr ecision
TP FP

=
+

                                  (1) 

TP
Recall

TP FN
=

+
                                  (2) 

3. Results 

3.1. Identification of shrimp ponds using AI (DL) 

After the DL model processes the data, the resulting output is transformed into a shape-

file format (specifically, a polygon format). This shapefile is then uploaded to Open-

StreetMap an excellent resource that combines features of a free and open website, an online 

map, a search engine, and a geodata editor. After uploading, the Shapefile data can be down-

loaded and further processed using ArcGIS software on a personal computer. 

Figure 7. Confusion matrix. 
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The verification dataset comprises a 1:2000 scale topographic map generated from UAV 

images. Technicians manually digitized the data layers on this map, which was officially 

accepted in 2023. To assess the performance of the DL model, the hydrological layer con-

taining shrimp ponds from the topographic map was overlaid with the DL-generated shrimp 

pond data. A confusion matrix was then constructed by using this combined dataset to eval-

uate the model’s accuracy (Table 1). 

Table 1. The confusion matrix with data evaluation values of DL model for shrimp pond. 

T
o

p
o

g
ra

p
h
y

 

m
ap

 

Predicted based on DL 

 Shrimp Pond Other 

Shrimp Pond 204 (TP) 41 (FN) 

Other 34 (FP) 10 (TN) 

Using formulas (1) and (2) we can calculate the following results: Precision = 85.7%; 

Recall = 83.3%. 

The detection and extraction of shrimp ponds from the DL model achieved a precision 

of 85.7%, showing that out of 238 shrimp ponds extracted by DL, 204 were correct, and the 

remaining 34 were mistakenly identified. The reason for the mistake was the similarity in 

shape and color between shrimp ponds and rice fields that had not been sown or had newly 

grown rice plants that were still very small (Figure 8). 

 

Figure 8. Similarity in shape and color between shrimp pond and rice paddy field. 

The recall of the DL model when identifying shrimp ponds is 83.3%, showing that out 

of 245 shrimp ponds on the topographic map, DL correctly identified 204 shrimp ponds, 

while the remaining 41 shrimp ponds were missed and could not be identified by the DL 

model. This shortcoming comes from the fact that the actual shrimp ponds at the time of 

taking the photos were abandoned, leading to water drying up and weeds covering the ponds 

(Figure 9). 

 

Figure 9. Similarity in shape and color between shrimp pond and rice field. 
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3.2. Shrimp pond map editor 

In the study area, the shrimp ponds exhibit consistent shapes. Their total area amounts 

to 42.4 hectares, which corresponds to 31.4% of the entire area (135 hectares). On average, 

each shrimp pond covers 1843.8 m2. Interestingly, there’s one pond specifically designed in 

a circular shape for shrimp larval cultivation. 

In the center of this area lies the Rach Van River, dividing it between the two communes 

(Phuoc Lai and Phuoc Vinh Tay). The meticulously edited map of shrimp ponds is rendered 

at a scale of 1:5000 (Figure 10). Amidst this landscape, scattered rice fields dot the terrain 

some still under cultivation, while others lie abandoned due to the challenges of low rice 

productivity. 

 

Figure 10. Map of Shrimp Ponds in two communes (Phuoc Lai and Phuoc Vinh Tay) in 2023. 

4. Discussion 

In our study, we employed DL technology based on the U-Net architecture to extract 

shrimp ponds. The achieved accuracy of 85.7% and recall of 83.3% is commendable, alt-

hough it falls short when compared to previous studies focused on object extraction. Notably, 

Farajzadeh and colleagues successfully extracted building footprints with an impressive ac-

curacy of 97% and a recall of 91% [25]. The key lies in the distinct features of buildings clear 

shapes and colors which facilitate their recognition. Additionally, Farajzadeh et al. leveraged 

a combination of orthomosaics and Digital Surface Models (DSMs), where buildings of var-

ying heights were represented in different colors. This approach led to highly accurate and 

well-recalled building footprint extraction, minimizing misclassification and omission. 

During our study, we encountered an important consideration when extracting shrimp 

pond boundaries: situations where the waterline and the actual shrimp pond boundary do not 

align perfectly. Dry ponds, in particular, exhibit this discrepancy, which can lead the DL 

model to mistakenly identify the waterline as the pond boundary (Figure 11). To address this, 

specific parameters must be fine-tuned for the DL model when identifying shrimp ponds in 

such cases. 

Another challenge arises when extracting shrimp ponds using DL: the robust growth of 

trees within these ponds. Sometimes, trees can obscure parts of the pond boundaries, 
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complicating the extraction process (Figure 12). To address this issue, field investigations 

and surveys become essential for making accurate adjustments. 

 
Figure 11. The waterline and the shrimp pond boundary do not coincide. 

 
Figure 12. Shrimp pond boundary covered by vegetation. 

5. Conclusion 

AI is gradually becoming familiar in various fields. When we use DL technology with 

image recognition, it significantly reduces the need for manual digitization, ultimately saving 

valuable time and effort. 

In our research, achieving an accuracy of 85.7% and a recall of 83.3% for shrimp ponds 

extraction is a positive outcome. It underscores the successful synergy between remote sens-

ing technology particularly utilizing UAV images and AI techniques. Notably, this approach 

isn’t limited to shrimp ponds alone; it holds promise for creating other thematic maps as well. 

However, there is no coincidence of waterline and shrimp pond boundary or shrimp pond 

boundary covered by vegetation. These are the problems that this study encountered, making 

it difficult for the DL model to accurately segment the image. Future studies on this hurdle 

should be made to improve precision. 

To enhance work efficiency, we recommend combining the U-Net architecture with 

other neural network architectures within the DL model. Additionally, if feasible, leveraging 

multispectral data collected from UAVs as input material for the DL image recognition model 
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holds great promise. This approach can lead to more accurate and comprehensive results in 

identifying and mapping features like shrimp ponds. 
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